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Abstract. We consider three examples of dissipative dynamical systems involving many degrees of freedom,
driven far from equilibrium by a constant or time dependent forcing. We study the statistical properties
of the injected and dissipated power as well as the fluctuations of the total energy of these systems.
The three systems under consideration are: a shell model of turbulence, a gas of hard spheres colliding
inelastically and excited by a vibrating piston, and a Burridge-Knopoff spring-block model. Although they
involve different types of forcing and dissipation, we show that the statistics of the injected power obey
the “fluctuation theorem” demonstrated in the case of time reversible dissipative systems maintained at
constant total energy, or in the case of some stochastic processes. Although this may be only a consequence
of the theory of large deviations, this allows a possible definition of “temperature” for a dissipative system
out of equilibrium. We consider how this “temperature” scales with the energy and the number of degrees
of freedom in the different systems under consideration.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion
– 05.45.-a Nonlinear dynamics and nonlinear dynamical systems

1 Introduction

For most dissipative dynamical systems driven out of equi-
librium by some forcing, the energy balance can be written
in the form

dE
dt

= P −D, (1)

where E(t) is the total energy of the system, constant in
the absence of dissipative processes and external forcing,
P (t) is the power of the external forces that drive the
system out of equilibrium, and D(t) is the power lost by
dissipative processes. Two types of problem, widely stud-
ied and for which equation (1) applies, are granular media
and turbulent flows. Consider for instance a collection of
macroscopic spherical particles enclosed in a vessel and
excited by vibrating one boundary (see Fig. 6): then, E
is the total kinetic energy of the particles, D is the power
lost by inelastic collisions and P is the power injected
into the granular medium by the motion of the boundaries
(we neglect gravity). If a statistically stationary regime is
reached, the temporal averages 〈P 〉 and 〈D〉 are obviously
equal

〈P 〉 = 〈D〉 · (2)
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However, in any realistic experiment, the three quantities
in (1), E, P and D, fluctuate in time, and one expects
strong differences in their statistical behaviors. One has
obviously

D(t) > 0, (3)

whereas P (t) takes negative values when a collision be-
tween a particle and the piston takes place when the pis-
ton is in descending motion. The same kind of remarks
can be made on the example of turbulent flows. Consider
an incompressible Newtonian fluid of density ρ and kine-
matic viscosity ν, driven by a volume force f(r, t). The
equations of motion are

∇ · v = 0, (4a)

ρ

[
∂v
∂t

+ (v · ∇)v
]

= −∇p+ ρν∆v + f , (4b)

where v(r, t) is the velocity field and p(r, t) is the pressure
field. Multiplying (4b) with v(r, t) and integrating on the
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whole flow volume V gives equation (1) with

E =
1
2
ρ

∫
V

v2dV, (5a)

P =
∫
V

f · v dV, (5b)

D = ρν

∫
V

ω2dV, (5c)

where ω(r, t) is the vorticity field, ω = ∇ × v. We have
assumed that the fluid is enclosed in a vessel of volume V
and that the velocity vanishes at the boundaries.

We note that, as for the vibrated granular “gas”, we
haveD(t) > 0 but P (t) may take instantaneously negative
values. This depends on the type of forcing of the flow (see
the discussion below).

A problem of interest is the study of the statistical
properties of the global quantities, E, P and D involved
in equation (1). The term “global” should be understood
as spatially integrated on the whole granular or fluid flow
volume in the examples mentioned above, or on a surface
if one considers the drag on a body in a turbulent flow or
the heat flux in Rayleigh-Bénard convection. We have al-
ready studied the statistics of such global quantities [1–3]
and emphasized that very little is known experimentally as
well as theoretically about their fluctuation to mean ratio
as the system is driven further and further in a turbulent
regime. Our goal in the present study is to check a possi-
ble property of the probability density function (PDF) of
the injected power, P (t), known as the “fluctuation the-
orem”. To the best of our knowledge, this property has
been observed first for the PDF of the entropy produc-
tion rate in a numerical simulation of a sheared fluid [4]
and has been derived on a more mathematical basis for a
particular class of time reversible dynamical systems [5].

Most dissipative dynamical systems are not time re-
versible, i.e. are not invariant under the transformation
t → −t. In references [4,5], the systems under consider-
ation are made time reversible by choosing an appropri-
ate form of dissipation for which equation (1) is trans-
formed to

dE
dt

= P − α[X(t)]D, (6)

where α[X] is a functional of the state X in the phase
space of the system. The next step is to choose α[X] such
that a global quantity can be kept constant. For instance,
if the total energy E is conserved, one has

P (t) = α[X(t)]D(t). (7)

In the fluid example, this can be achieved by assuming
that the kinematic viscosity is a functional of the ve-
locity field, ν[v]. Note that P (t) = α[X(t)]D(t) implies
ν[−v] = −ν[v] such that the transformed dissipation does
not break t→ −t. References [4,5] have related α[X]D to
the fluctuations of the entropy production rate. Although
the mean entropy production rate is positive, its instanta-
neous value may take negative values and the fluctuation

theorem relates the probabilities of positive, respectively
negative, production rates during a time interval τ . More
precisely, writing

ετ (t) ≡ 1
τ

∫ t+τ

t

P (t′)dt′, (8)

they have shown that the PDF Π obeys

Π(ετ = ε)
Π(ετ = −ε) ' exp βετ for τ →∞, (9)

where β is a constant (τ →∞ should be understood as τ
large compared to the correlation time of P (t)).

For the dissipative systems we consider here, the in-
stantaneous dissipation is positive but the injected power
may change sign. Our goal is to check the possible valid-
ity of the relation (9) in the case of dynamical systems
that are not made time reversible. We emphasize that the
demonstration of the fluctuation theorem being intimately
connected to time reversibility, it is not a priori obvious
that this relation applies in the case of the dissipative dy-
namical systems considered here. However, we note that
this relation has been shown in the case of the Langevin
equation which is not a time reversible dynamical
system [6].

This paper is organized as follows: we first consider in
Section 2 a well-known shell model of turbulence and we
show that the power injected into the system by the con-
stant applied external force strongly fluctuates in time,
sometimes taking negative values. We then study the
probability density function of the injected power aver-
aged over a time interval τ and show that equation (9)
holds for this dissipative system. We repeat the same
procedure in Section 3 for a granular gas of inelastically
colliding particles agitated by vibrating one boundary
of the container. In Section 4, we consider a Burridge-
Knopoff spring-block model: a chain of blocks connected
by springs, is pulled at one end with a constant velocity V
on a rough surface (Fig. 9). We show again that the power
of the pulling force strongly fluctuates and reaches nega-
tive values. Equation (9) holds for the granular gas as well
as for the chain of blocks, but the constant β has a very
different behavior in these two systems when the number
of degrees of freedom is changed (the number of particles
or the number of blocks). This is discussed in Section 5.

2 Power fluctuations in a shell-model
of turbulence

2.1 The model

Shell models have been introduced as an attempt to mimic
the dynamics of turbulence in Fourier space [7,8]. All the
Fourier modes in the shell of wavenumbers k between kn =
k0λ

n and kn+1 (usually, and also in the present study,
λ = 2) are represented by only one complex (or sometimes
real) mode un, which is coupled to its nearest and next
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nearest neighbours through quadratic interactions, such
that the total energy

E =
1
2

N∑
n=1

|un|2, (10)

is conserved in the absence of dissipation and forcing. The
inviscid and unforced dynamics should also conserve the
volume in phase space and possess the same scale invari-
ance as the Euler equation. A class of shell models which
has been introduced by Ohkitani and Yamada [9] and
widely studied, is the following system of ordinary dif-
ferential equations (GOY model):

dun
dt

= ikn

(
u∗n+1u

∗
n+2 −

α

2
u∗n−1u

∗
n+1

− 1− α
4

u∗n−2u
∗
n−1

)
+ fn − νk2

nun (11)

where the * stands for the complex conjugate, fn is the
Fourier complex amplitude of the force applied on the
shell n, and ν is the kinematic viscosity. The parame-
ter α determines the form of a second quadratic invari-
ant of the inviscid and unforced system. The model with
α = 1/2 displays intermittency phenomena similar to the
ones observed in fully developed three-dimensional tur-
bulence [10,11]. We have made the conventional choices:
λ = 2, α = 1/2, k0 = 2−4, fn = f δn,4 = 5(1 + i) 10−3 δn,4,
and we have varied ν in the range 10−9 < ν < 10−4 with
N chosen accordingly (see below).

Multiplying equation (11) by u∗n and adding its com-
plex conjugate, the summation on n leads to an equation
of the form (1) with

P = R(f u∗4), (12)

D = ν
N∑
n=1

k2
n|un|2, (13)

where R stands for the real part. As mentioned above,
D(t) > 0, but the injected power, P , can take negative
values depending on the phase of the Fourier component
of the velocity at the wavenumber of the external forcing.
If shell models are expected to mimic the properties that
are believed to hold for turbulence, the mean injected (or
dissipated) power should become independent of ν in the
limit ν → 0. Surprisingly, this does not seem to have been
precisely checked in the literature, probably because it is
time consuming to perform an accurate check on a wide
range of ν.

We have integrated (11) using the fourth order Runge-
Kutta method with time step ∆t, depending on the value
of ν. As ν is decreased steeper gradients develop in a
turbulent fluid, i.e. a larger number N of shells should
be taken into account in the model. This can be under-
stood easily from the form of the coefficient of the dissi-
pative term, νk2

n. The smaller is ν, the larger should be
kn in order to have a given amount of dissipation. The
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Fig. 1. Time recordings of the energy, E (upper curve), the
injected power, P (thick grey curve) and the dissipated power,
D (lower curve: D/20). ν = 10−6, N = 20.
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Fig. 2. Cross correlation function (C(τ ) ≡ 〈(P (t)−
〈P 〉) (E(t+ τ )− 〈E〉)〉/σ(P )σ(E)) of the injected power and
energy fluctuations showing a maximum larger than 0.6 for a
time lag τ = 6.5 (black curve). Cross correlation function of
the injected power and the dissipation showing a smaller max-
imum for a time lag τ = 11.5 (grey curve). ν = 10−7, N = 22.

mean energy flux due to the nonlinear terms is constant
through the shells of low kn and equal to the mean en-
ergy dissipation rate 〈D〉, the dominant contribution of
which corresponds to the large values of kn. The transi-
tion wave number corresponds to the Kolmogorov scale,
kd = 〈D〉1/4 ν−3/4, from which we can define nd by
kd = k0λ

nd . The mean energy flux through each shell is
constant almost up to the shell nd. For each value of ν, we
have taken the total number of shells, N , in order to have
about 4 shells above nd, i.e. in the dissipative range. We
have also checked that increasing N does not modify the
results. We thus have studied the following cases: (ν,N) =
(10−4, 15), (10−5, 17), (10−6, 20), (10−7, 22), (10−9, 29).

Figure 1 displays a small sample of the direct record-
ings of the injected power, P , the energy, E, and the dis-
sipated power, D, for ν = 10−6 and N = 20. The in-
jected power displays strong fluctuations, almost 50% of
the mean value, and can take negative values.

The characteristic correlation time is defined by the
width at the value 0.5 of the autocorrelation function. We
have τP ≈ 15 for P (t) and τE ≈ 34 for E(t) (ν = 10−7);
they keep the same orders of magnitude for the whole
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Fig. 3. Probability density function of the injected power, P , the energy, E, the dissipated power, D, and its logarithm.
ν = 10−7, N = 22.

studied range of ν. The correlation time for D(t) is much
smaller and strongly depends on ν (0.025 for ν = 10−7).

The correlation between P (t) and E(t) is apparent in
the time recordings of Figure 1. The cross-correlation of
the injected power and the energy, displayed in Figure 2,
is a more quantitative evaluation of this observation. It
shows a maximum larger than 0.6 for a time lag τ = 6.5.
The cross-correlation of the injected power and the dissi-
pation shows a smaller maximum for a time lag τ = 11.5.
Thus, dissipation bursts follow an increased energy which
itself follows an additional amount of injected power.

The PDF of P , E, D and logD are shown in Fig-
ure 3 for (ν,N) = (10−7, 22). As already observed, the
injected power takes negative values. For ν = 10−7, we
have 1.3% of negative events. The shape of the PDF of in-
jected power is slightly asymmetric with a negative skew-
ness. However, the skewness is positive for ν = 10−5 al-
though the percentage of negative events is larger, 6.7%.
The skewness vanishes for ν = 10−6. The probability of
negative P values almost vanishes for ν = 10−4. The PDF
of the energy is strongly asymmetric but this can be easily
understood since the dominant contribution to E comes
from the square of the modulus of un for small values of
n. The very intermittent behavior of the dissipated power
is apparent in the shape of its PDF, which roughly cor-
responds to a lognormal distribution, although its tails
decay faster. The mean values of P and E together with
their rms fluctuations are given in Table 1. Each numeri-
cal value is given with a number of digits consistent with
the estimated error. Except for the case ν = 10−9, for

which the integration time step is the shortest, the total
integration time is longer that 105τP .

As mentioned above, although 〈P 〉 keeps the same or-
der of magnitude when ν is varied from 10−4 to 10−9, we
do not find any clear tendency of an asymptotic regime
〈P 〉 → constant, when ν → 0. The rms fluctuations σ(P )
of the injected power related to the mean value, remain
very large (roughly 50% as ν is decreased). Large fluctua-
tions of P (t) related to the mean value (roughly 10%) have
been also observed in recent experiments on turbulent
flows but they slowly decrease when the Reynolds number
is increased [2,3,12]. The dissipated power is strongly in-
termittent and its characteristic time scale is much smaller
than the one of the injected power. This behavior is not ob-
served in numerical simulations of turbulent flows where
the total dissipated power integrated on the whole flow
volume, shows a characteristic timescale comparable to
the one of the injected power [13]. In a turbulent flow, one
may also argue that the relative width of the distribu-
tion of D should decrease when the viscosity is decreased,
because the number of degrees of freedom is increased.
The opposite behavior is observed in this shell model; the
relative width of the distribution of D or logD increases
significantly when ν is decreased. Let us thus note that,
although shell models may display scaling exponents of
the structure functions in qualitative agreement with real
turbulence, they are in disagreement with elementary as-
sumptions on turbulent flows such as the constant limit of
the energy dissipation in the large Reynolds number limit.
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Table 1. Mean values and standard deviations of the injected power, the dissipation and the energy in the shell model.

ν 10−4 10−5 10−6 10−7 10−9

N 15 17 20 22 29

〈P 〉 1.491 × 10−3 8.09 × 10−4 1.014 × 10−3 1.346 × 10−3 1.0× 10−3

σ(P )/〈P 〉 0.358 0.678 0.530 0.417 0.57

〈D〉 1.491 × 10−3 8.09 × 10−4 1.014 × 10−3 1.346 × 10−3 1.0× 10−3

σ(D)/〈D〉 1.33 2.54 3.08 4.06 7.1

〈log10D〉 -3.064 -3.606 -3.683 -3.730 -4.2

σ(log10 D)/|〈log10 D〉| 0.1538 0.1953 0.2255 0.250 0.26

〈E〉 0.0655 0.0565 0.0534 0.0724 0.062

σ(E)/〈E〉 0.367 0.391 0.390 0.34 0.40

2.2 “Test of the fluctuation theorem”

The probability density functions of the injected power
averaged over a time interval τ for τ = 15, 30, 45, 60, are
displayed in Figure 4 for the case ν = 10−7, N = 22, for
which the correlation time is τP = 15. As the averaging
time is increased, the fluctuations decrease and the PDF
shrinks around its mean value. The percentage of negative
events thus decreases, which puts an upper limit on the
value of τ for which the fluctuation theorem (Eq. (9)) can
be checked on numerical or experimental data. When dis-
played as a function of the reduced variable (ετ−〈ετ 〉)/στ ,
where 〈ετ 〉 is the mean value of ετ and στ its standard de-
viation, all the PDFs roughly collapse on a Gaussian with
zero mean and unit standard deviation. A closer inspec-
tion shows a slight departure from the Gaussian, which
in this case, decreases as τ increases. Note however that
as mentioned above, the shape of the PDF of P slightly
depends on ν and is almost Gaussian for ν = 10−6; in that
case, the shape of the PDFs of ετ deviates from a Gaussian
as τ increases. This shows that P (t) involves long-range
correlations.

The quantity 1
τ log Π(ετ )

Π(−ετ ) , is plotted as a function
of ετ in Figure 5 in order to check the fluctuation theo-
rem. We observe that the form of equation (9) holds for
any value of τ but that β depends on τ (as observed for
reversible systems [4]). As τ increases, β(τ) tends to a
constant value β in agreement with the fluctuation theo-
rem (see the inset of Fig. 5). Without averaging on time,
we have also checked that log Π(P )

Π(−P ) is linear in P . One
might then think that β(τ) could be represented over the
entire range of τ as β(τ) = β(τ = ∞) + constant/τ , as
observed for temperature fluctuations in [30]; this is not
true in our case: although β(τ) is linear in 1/τ for large
1/τ , its difference from its asymptotic value β goes to zero
much faster than 1/τ for small 1/τ .

A similar analysis has been performed for ν = 10−6

and ν = 10−5. The case ν = 10−4 does not involve a
large enough probability of negative values of P to allow a
quantitative check of equation (9). We did not get enough
statistics for the case ν = 10−9 because the number of
required integration time steps is too large. The value of

−1 0 1 2 3

x 10
−3

10
−1

10
0

10
1

10
2

10
3

ετ

P
D

F
 [ 

ε τ ]

−4 −2 0 2 4
10

−4

10
−3

10
−2

10
−1

10
0

(ετ−<ετ>)/στ

σ τ P
D

F
 [ 

ε τ ]

(a)

(b)

Fig. 4. (a) Probability density functions of the injected power
averaged over a time interval τ : τ = 15 (�), τ = 30 (∗), τ =
45 (�), τ = 60 (◦). As the averaging time is increased, the
fluctuations decrease and the PDF shrinks around its mean
value. (b) When displayed as a function of the reduced variable
(ετ − 〈ετ 〉)/στ , all the PDFs roughly collapse on a Gaussian
with zero mean and unit standard deviation (full line). A closer
inspection shows a slight departure from the Gaussian, which
in this case (ν = 10−7, N = 22), decreases as τ increases.

β is given in Table 2 as a function of ν. We note that βE
divided by the number of shells in the inertial range is of
order one, i.e. that 1/β scales like the mean kinetic energy
per relevant degree of freedom.
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Table 2. The value of β as a function of ν.

ν 10−5 10−6 10−7

β 350 310 290

β〈E〉/(nd − 3) 1.8 1.2 1.3

3 Power fluctuations in a granular gas excited
by vibrations

3.1 Energy flows in a granular gas excited by vibrations

Fluidization of a vibrated granular medium has been
widely studied in the past years, both experimen-
tally [14–16] and numerically [17]. Since a fraction 1− r2

of the particle kinetic energy is dissipated during the col-
lisions (r is the restitution coefficient, 0 < r < 1), a sta-
tionary fluidized state necessitates a mean external flow
of energy, 〈P 〉, into the system. This is usually achieved
by using a vibrating piston which compensates the mean
dissipated energy flow 〈D〉 (see Fig. 6). These externally
injected and dissipated energy flows have been studied nu-
merically, but only their mean values have been considered
so far, as well as the mean kinetic energy per particle, i.e.
the “granular temperature”.

We consider here the fluctuations of these quantities
averaged over one period of vibration. The system is simi-
lar to the one studied in reference [17]. It consists of a two
dimensional collection of inelastic hard disks of radius a,
contained in a square container of length L = 50 a. We
take periodic boundary conditions along the x-axis and
agitate the particles by moving the piston at period T

T, V

Fig. 6. A snapshot of the gas of inelastically colliding particles
excited by vibrating horizontal boundaries. Periodic boundary
conditions have been taken at vertical boundaries.

with a maximum velocity V ; the periodic motion consists
of an approximation of a sinusoidal wave by parabola. We
take in all simulations: T = 1 and V = 3. We both consider
the cases with and without gravity, g. For simplicity, the
particle-wall collisions are assumed to be elastic. We use
the standard event-driven method as in previous studies.
We perform a simulation that records the values of P (t)
and E(t) as well as the mean dissipation D(t) averaged
over one cycle, for each cycle of vibration. In our param-
eter range, there are at most a few collisions of particles
with the vibrating piston during each cycle, and some-
times no collision. This explains the presence of the peak
at zero value of P in the PDF of the injected power (see
Fig. 7a). It displays an exponential tail of events with neg-
ative power for which there is a backflow of energy from
the granular gas to the piston. The tail with events corre-
sponding to a flow of energy into the gas is also roughly
exponential. The precise shape of this PDF strongly de-
pends on the parameter values of the model, in particu-
lar, on the restitution coefficient, r, the particle number,
N , and on the value of the acceleration of gravity. Thus,
there is no “universal” shape for the PDF of the injected
energy, that obviously depends on the way the system is
forced [20].

The mean values of the injected power, 〈P 〉, and of the
total kinetic energy, 〈E〉, together with their rms fluctua-
tions, σ(P ) and σ(E), are displayed in Table 3 as functions
of the number of particles, N , and the restitution coeffi-
cient, r. First note that, contrary to fluid turbulence or
to the shell model, the mean value of the injected power,
〈P 〉, is not expected to saturate to a constant value as
the coefficient governing dissipative processes, here 1− r,
vanishes. We observe that when r → 1, the particle mean
velocity becomes larger and although the collisions are
more elastic, the gas dissipates more energy. The mean
injected power also increases correspondingly.

When gravity is added, it acts like an external field
on the particles. Then we need to take into account the
corresponding work in equation (1) or in other words, the
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Table 3. Mean values and standard deviations of the injected power and energy for a granular gas with N particles of restitution
coefficient r.

N 50 100 100 (g = 0.2) 200 200 200

r 0.9 0.9 0.9 0.9 0.95 0.99

〈P 〉 11.21 10.22 35.37 9.75 22.87 107.96

σ(P )/〈P 〉 1.50 1.40 0.85 1.37 0.98 0.67

〈E〉 287.46 194.32 412.59 136.63 372.28 2970

σ(E)/〈E〉 0.17 0.17 0.11 0.19 0.13 0.079

amount of potential energy converted into kinetic energy
E. Thus, the total weight of the particles times the verti-
cal velocity of the center of mass should be added to the
part of P due to the collisions with the piston. The third
column of Table 3 shows that gravity increases the mean
value of E and P but decreases the relative fluctuations.

The PDF of the total kinetic energy E and of the dissi-
pation D are smoother than the one of the injected power,
although strongly asymmetric toward large values of the
energy and the dissipation (Fig. 7b, c). It is tempting to
fit these PDF using the gamma distribution of the form
x
n
2−1 exp−αx, also known as the “chi-square” distribu-

tion [18]. Indeed, it is known that the sum of the squares
of mutually independent normal variables has a PDF of
this form, a well known example being the kinetic energy
of a perfect gas [18]. n is the number of variables in the
sum and is called the number of degrees of freedom of this
distribution.

In a regime without clustering, the PDF of E is reason-
ably fitted by the gamma distribution but with n smaller
than 2N (in 2 space dimensions) which shows that the
number of effective degrees of freedom is decreased be-
cause of the inelasticity of the collisions.

The PDF of D is also reasonably fitted by the gamma
distribution in a regime without clustering. One observes
that n increases when r → 1 or when N is increased.
However, for r fixed, the increase of n is not linear in N
and seems to saturate when N is increased. In the stud-
ied range of parameters, n is smaller than the number of
collisions per vibration cycle.

We expect the gamma distribution to be only an ap-
proximation of the PDF of E or D because the added ran-
dom variables are no longer independent normal variables
when the collisions are inelastic. However, the dependence
of n on the system parameters (r, N , ...) may be interest-
ing to study further in order to get insights in the behavior
of a granular gas.

3.2 “Test of the fluctuation theorem”

The quantity 1
τ log Π(ετ )

Π(−ετ ) , is plotted as a function of ετ
in Figure 8 in order to check the fluctuation theorem. We
have not considered the values of ετ close to zero because
of the large error bars due to the peak of events with zero
injected power in Figure 7a. We observe that equation (9)
holds for any value of τ . Moreover, contrary to the shell
model, here β(τ) does not depend on τ . We observe in Fig-

Table 4. The value of β as a function of r and N .

N 50 100 100 (g = 0.2) 200 200 200

r 0.9 0.9 0.9 0.9 0.95 0.99
β〈E〉
N

1.10 0.42 0.6 0.34 0.45 0.75

ure 8 that 1
T log Π(P )

Π(−P ) displays roughly the same slope
β as a function of the injected power P . This is proba-
bly related to the fact that the injected power during one
vibration cycle is not correlated with the one during the
previous cycle.

The value of β is given in Table 4 as a function of the
number of particles N and their restitution coefficient r.
We note that β〈E〉/N is of order one and that it is de-
creased either by decreasing the restitution coefficient, r,
or by increasing the number of particles, N . This depen-
dence is consistent with previous studies [19], that show
that the granular gas exhibits stronger and stronger corre-
lations and clustering when either N or (1−r) increases at
fixed volume. This suggests that the decrease of β〈E〉/N
when r is decreased for N = 200, is related to the fact
that the effective number of degrees of freedom of the sys-
tem decreases. Note also that there is no clear behavior of
β〈E〉 as a function of N for r = 0.9. However, it should be
emphasized that we have obtained the same value for β
when the particle number is multiplied by 2 at fixed den-
sity (N = 100, L2 = 2500a2 and N = 200, L2 = 5000a2)
(see the discussion below).

4 Power fluctuations in a spring-block model

4.1 The model

We consider a chain of blocks connected by linear springs
and pulled at one end with a constant velocity V (Fig. 9).
The blocks are on a rough surface and, as time evolves,
a given block slips if the elastic force applied to it by the
connecting springs exceeds the static friction force. This
model, as well as another one where each block is also
directly connected to the driving device, have been pro-
posed by Burridge and Knopoff to model earthquakes [21].
It has been shown that when the dynamic friction force
is a decreasing function the the block velocity, these mod-
els display random slipping events that involve n blocks
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Fig. 7. (a) Probability density function of the injected power,
P (N = 200, r = 0.9). The peak at zero corresponds to the
cycles of vibration which involve no collision of a particle with
the vibrating boundaries. (b) Probability density function of
the kinetic energy E of the particles and its fit with a gamma
distribution (full line). (c) Probability density function of the
dissipated power and its fit with a gamma distribution (full
line).
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Fig. 8. The quantity 1
τ log Π(ετ )

Π(−ετ ) , is plotted as a func-

tion of ετ in order to check the fluctuation theorem. τ =
2T (�), 3T (×), 4T (+), 5T (∗). Straight line fit (full line). Note
that in this example β does not depend on τ and that the
injected power itself displays roughly the same slope β (◦).
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Fig. 9. Sketch of the Burridge-Knopoff model: N blocks of
mass m, connected with springs of constant stiffness k, are
pulled on a rough plane at constant velocity V .

(1 ≤ n ≤ N , where N is the total number of blocks of the
chain) [22,23]. The main motivation was to study the scal-
ing properties of the probability distribution function of n
in order to get insights in the scaling properties of earth-
quake magnitudes. We consider here the model studied
in [23] but with different motivations. Our aim is to study
the temporal dynamics and statistics of global quantities,
such that the length of the chain L(t), the power dissi-
pated by the friction force, D(t), or the one injected into
the system by the operator pulling at constant velocity,
P (t). Our first motivation is to study how the fluctua-
tions of these “macroscopic” quantities relative to their
mean value, behave as the number of degrees of freedom,
i.e. here the number of blocks, N , is increased. Is the ratio
of fluctuation size to the mean value reduced when N is
increased, and if yes what is the corresponding law? Our
second motivation is to study the statistical properties of
the injected power, P (t). When the blocks are at rest, the
operator’s work is positive and increases the elastic po-
tential energy of the system. During a slipping event, one
part of the elastic energy is dissipated by the friction force
but another part may be given back to the operator, i.e.
P (t) < 0. Of course, on average, 〈P 〉 = 〈D〉 > 0. We study
the events with negative P (t) and check the prediction of
the “fluctuation theorem”.
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We use notation similar to that of reference [23]. Defin-
ing the rescaled displacement of the jth block, Uj =
kXj/Fo, where F0 is the static friction force and k is the
spring constant, we get the non-dimensional equations of
motion{

Üi = (Ui+1 − 2Ui + Ui−1)− 1
1+2αU̇i

if U̇i > 0,

U̇i = 0 if not.
(14)

Time is rescaled using the characteristic spring frequency√
k/m. The second term in the right hand side of equa-

tion (14) is the dynamic friction force; it should decrease
with the velocity in order to get erratic sliding motions of
the blocks. α characterizes the dependence of the friction
force on the block velocity. Contrary to reference [23], the
Nth block is not kept at a fixed position but moves freely.
The boundary conditions are thus: U0 = V

√
mk t/F0 and

UN+1 = UN .

4.2 Macroscopic parameters and their fluctuations
in the limit of large number of blocks

We multiply equation (14) by Ui and sum over all blocks.
We find

P (t) =
V

V0
(U0(t)− U1(t)) (15a)

D(t) =
N∑
i=1

U̇i(t)
1 + 2αU̇i(t)

(15b)

E(t) =
1
2

[
N∑
i=1

U̇i(t)2 +
N∑
i=0

(Ui+1(t)− Ui(t))2

]
(15c)

where V0 is the characteristic speed Fo/
√
mk. Figure 10

shows the PDFs of P , E, D and the one of the extension
of the chain length L(t) = U1(t)−UN(t), for N = 200 with
a dimensionless pulling velocity equal to 0.1 and α = 0.5.
We first notice that none of these quantities displays Gaus-
sian fluctuations. The skewness of the injected power is
negative (equal to −0.65) as well as the one of the length
extension (equal to −0.71) whereas the one of the energy
is strongly positive (equal to 1.55). The injected power dis-
plays 10 to 20% of negative events. The dissipated power
D is always positive as expected from (15b) since U̇i > 0.
Its most probable value is zero, i.e. corresponds to blocks
at rest, and its PDF presents a power-law fall-off. Note
also that the pulled chain is extended on average since
〈L〉 > 0. The PDFs of all these quantities keep the same
form when the number of blocks increases from 20 to 2000.

It is particularly interesting to consider the mean value
and the ratio of the fluctuations to the mean, for these
four “macroscopic” quantities, as the number of blocks
increases. This is shown in Table 5. First, none of the
averaged quantities grows linearly with the number of
blocks as would be expected if some thermodynamic limit
were reached. The mean energy and the mean extension
length grow faster whereas the mean injected power grows
slower. We have respectively 〈E〉 ∝ N2.23, 〈L〉 ∝ N1.6

and 〈P 〉 = 〈D〉 ∝ N0.5. Moreover the relative fluctuations
which are very large (about 80% for the energy and up to
more than 100% for the injected power), do not decrease
when N is increased. The relative fluctuations of the in-
jected and dissipated power even increase. These facts re-
sult from a long-range correlation between blocks. Indeed,
if the spatial correlation function, 〈Un(t)Un+p(t)〉, is aver-
aged over a sufficiently long time, it does not vanish when
p increases. Despite their erratic motions, the blocks are
strongly correlated in the chain. This will be also apparent
in the dependence of β versus N in equation (9).

4.3 “Test of the fluctuation theorem”

It is easy to check the fluctuation theorem on this sys-
tem because of the rather large percentage of negative
events in the injected power. The quantity 1

τ log Π(ετ )
Π(−ετ ) ,

is plotted as a function of ετ in Figure 11. We observe that
equation (9) holds for large values of τ and that β(τ) con-
verges to a constant for τ larger than 10 tc where tc is the
correlation time of P (t). Slight departures from linearity
are observed for small values of τ .

The value of β is given in Table 6 as a function of
the number of blocks N . Contrary to the two previous
examples, 1/β scales like the mean energy and not the
mean energy divided by the number of blocks (see below).
This is in agreement with the fact that the blocks are
strongly correlated whatever the length of the chain.

5 Discussion and concluding remarks

5.1 The theory of large deviations
and the form of equation (9)

The demonstration of the fluctuation theorem being con-
nected to time reversibility, it may be a priori surprising
that the three different dissipative systems we considered
here follow relation (9) so nicely. The observation of a law
of the form (9) should thus have a deeper basis and not
be restricted to reversible Anosov systems. It has been
pointed out that the fluctuation theorem is “a large de-
viation theorem” [5,24]. Indeed, ετ being the average of
the injected power on a time interval τ , we have for the
probability density Π(ετ = ε)

Π(ετ = ε) ∝ exp τf(ε) for τ →∞, (16)

according to the theory of large deviations [25,26]. In the
systems investigated here, 〈P 〉 = 〈D〉 has a positive finite
value. Thus, the probability of observing values of ετ close
to zero is very small as soon as τ is large compared to the
correlation time of P (t), and the leading order Taylor ex-
pansion of (16) around ε = 0 gives (9) with β = 2 f ′(0).
This may be the very simple reason for which a law of the
form (9) is observed for all the dissipative systems con-
sidered here. In the case of reversible systems, it has been
shown that the quantity 1

τ log Π(ετ )
Π(−ετ ) is linear in ε [4,5].
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Fig. 10. Probability density function of the injected power, P , the total energy, E, the dissipated power, D, and the length
extension of the chain, L, α = 1, V = 0.1, N = 100.

Table 5. Mean values and standard deviations of the energy, the length extension, the injected power, and the dissipation for
the spring-block model.

N 20 50 100 200 500 1000

〈E〉 118.53 889.8 4267.5 2.02× 104 1.67 × 105 7.014 × 105

σ(E)/〈E〉 0.79 0.77 0.79 0.80 0.80 0.82

〈L〉 33.31 152.9 459.1 1347.6 6008.1 1.737 × 104

σ(L)/〈L〉 1.13 1.11 1.20 1.29 1.36 1.32

〈P 〉 0.491 0.822 1.158 1.639 2.506 3.539

σ(P )/〈P 〉 0.67 0.77 0.90 1.00 1.18 1.24

〈D〉 0.492 0.824 1.159 1.642 2.500 3.544

σ(D)/〈D〉 2.18 2, 60 3.01 3.41 4.15 4.69

Although this property is also observed in our simulations,
we cannot claim that higher powers of ε are absent; they
may just be too small to be observed.

It should be noted also that a law of the form (9) is ob-
served for small values of τ and even for P (t) itself, in the
examples of the shell model and the granular gas. We may
explain this behavior by using the large deviation theorem
for P (t) considered as an average on the whole system.
Then β should be linear in N , the number of degrees of
freedom of the system, as it is observed. Note that since
P (t) takes negative values with a larger absolute value
than ετ , one may expect that nonlinear terms in ε, if they
exist, would be more easily probed. This is not the case for
the shell model since all PDFs are roughly Gaussian (see
Fig. 4b) which implies that a law of the form (9) should
be observed anyway. In the case of the granular gas, the
PDF of P (t) is very far from Gaussian. With the param-
eters of Figure 7a, it has an exponential tail on the range
P < 0 and is roughly constant on the symmetric interval

range P > 0 (in one excludes the peak for P = 0). Thus,
one observes that (9) should hold on the interval range
on which Π(P ) and Π(−P ) can be compared. However,
we cannot exclude that longer statistics involving more
negative values of P , do not show a difference from (9).

The main interest of (9) is that, β being homogeneous
to the inverse of an energy, it could be used to define a
“temperature” for a dissipative system out of equilibrium.
We have thus considered how β−1 scales with the mean
energy 〈E〉 and the number of degrees of freedom of the
systems we have studied. The example of the granular gas
is instructive. In the case of elastic collisions one expects
β〈E〉/N = 1 from the equipartition of energy. We observe
in Table 4 that β〈E〉/N is indeed of order one and that
it decreases when the particle number N is increased or
when the restitution coefficient r is decreased. One also
observes that β〈E〉/N is only slightly modified when an
external gravity field is added. More importantly, in the
parameter range of our studies (i.e. without clustering),
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β is unchanged when the particle number is doubled at
fixed density. Using β−1 as a definition of “temperature”
in this system looks rather reasonable from these quali-
tative considerations. The situation is similar in the shell
model where β〈E〉 is roughly proportional to the number
nd − 3 of shells in the inertial range when the viscosity is
varied (see Tab. 2). Note however that these two dissipa-
tive systems have a qualitatively different zero dissipation
limit. In the case of the shell model, the mean injected or
dissipated powers keep the same order of magnitude when
ν decreases whereas in the granular gas, they strongly in-
crease when r → 1, but in both cases β−1 scales like the
mean energy per degree of freedom. The situation is dif-
ferent in the spring-block example where β〈E〉 is almost
unchanged when the number of blocks is increased from
20 to 1000. As we already noticed, this system involves
strong long-range spatial correlations among the blocks.
Thus, increasing the number of blocks does not lead to an
increase of the number of the relevant degrees of freedom
of the system. It is satisfactory that this peculiar behav-
ior of the system is apparent in the behavior of β as a
function of N . Thus, trying to extend the concepts intro-
duced in the fluctuation theorem to dissipative (non time
reversible) dynamical systems, leads to a possible defini-
tion of a “temperature” which characterizes rather well
some qualitative features of these systems.

5.2 Experimental checks of the fluctuation theorem

The next step is of course to ask whether these concepts
could be of some use in real experiments, for instance in
turbulence, for which it has been already proposed to use
the fluctuation theorem [28]. The problem we have to deal
with in the case of most experiments on turbulent flows is

Table 6. The value of β as a function of N .

N 20 50 100 200 500 1000

β〈E〉 3.93 3.74 2.94 2.83 2.92 3.33

that P (t) stays positive. If the flow is generated by a con-
stant volume force (the gravity field for instance), equa-
tion (5b) shows that it is very unlikely that P (t) takes
negative values (which would correspond to a complete
reversal of the mean flow). With a spatially periodic forc-
ing, P (t) is proportional to a Fourier component of the ve-
locity field at the forcing wavenumber, and takes negative
values if the instantaneous velocity field and the forcing
are out of phase. With a sinusoidal forcing in time, P (t)
takes negative values if the forcing frequency is smaller or
comparable to the one of the large scales of the flow. Thus,
it seems that the possible use of the “fluctuation theorem”
may depend on the way the flow is forced, which is a rather
negative aspect for a general law.

In the case of flows with P (t) > 0, a possibility would
be to consider the power injected in a finite subset of
the flow. If its volume is taken small enough, the injected
power is more likely to take negative values. However, this
would lead to rather difficult measurements involving the
evaluation of surface terms. A Lagrangian measurement,
i.e. the power injected in a small volume of fluid particles
advected by the flow, is even more out of reach. Thus, at-
tempts of demonstrating a local version of the fluctuation
theorem [27], although interesting and far from being an
obvious extension of (9) [29], are likely to be of little use
for the interpretation of experimental results.

It is of course possible to try to check (9) with any lo-
cal field measured in a turbulent flow. This has been per-
formed with local temperature fluctuations in Rayleigh-
Bénard convection [30]. Although more than vaguely re-
lated to the injected power or to the entropy creation rate,
it has been shown that the local temperature fluctuations
follow a law of the form (9). The locally measured tem-
perature fluctuations have zero mean in the horizontal
mid-plane (contrary to the heat-flux) and the appropriate
choice of the vertical position of the temperature probe in
fact arbitrarily defines a zero temperature in the temper-
ature fluctuations PDF. One may follow the same proce-
dure for any random signal. Taking the pressure field in
a turbulent flow for instance, we have arbitrarily defined
a zero pressure, and observed that, provided it does not
correspond to the mean pressure, a law of the form (9) is
observed [31]. Of course, the value of τ required for con-
vergence to (9) depends on the choice of the origin as well
as the value of β. This is obviously related to the law of
large deviations, and possible cubic or higher order terms
in ε are not probed probably because they are too small.

It is only when a power is measured (or a quantity with
the same dimension) that the value ε = 0 has a physical
meaning, distinguishing the sign of the work done on the
system by the external forces. We found that the corre-
sponding β leads to a possible definition of a “temper-
ature”. The problem we have in many experiments for
which P (t) does not take negative values, is related to
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the fact that equation (1) remains valid if an arbitrary
constant is added to both P and D. A possible choice to
analyze turbulent data would be to determine the mean
flow and to subtract from P (t) the power necessary to
maintain the mean flow. This will be difficult to compute
in most experimental configurations but could be easily
tried on direct numerical simulations. A simpler possibil-
ity would be to use the above remark and to define arbi-
trarily a zero of P (t) with the hope that the scaling of β
with respect to 〈E〉 and the number of degrees of freedom
does not crucially depend on the choice of the origin. This
could be checked in many cases and clearly deserves more
experimental or numerical studies.

We acknowledge useful discussions with F. Bonetto, E. Cohen,
B. Derrida, U. Frisch, J. Kurchan and E. Tirapegui .
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